首页> 外文OA文献 >Object Attention Patches for Text Detection and Recognition in Scene Images using SIFT
【2h】

Object Attention Patches for Text Detection and Recognition in Scene Images using SIFT

机译:使用SIFT在场景图像中进行文本检测和识别的对象注意补丁

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural urban scene images contain many problems for character recognition such as luminance noise, varying font styles or cluttered backgrounds. Detecting and recognizing text in a natural scene is a difficult problem. Several techniques have been proposed to overcome these problems. These are, however, usually based on a bottom-up scheme, which provides a lot of false positives, false negatives and intensive computation. There- fore, an alternative, efficient, character-based expectancy-driven method is needed. This paper presents a modeling approach that is usable for expectancy-driven techniques based on the well-known SIFT algorithm. The produced models (Object Attention Patches) are evaluated in terms of their individual provisory character recognition performance. Subsequently, the trained patch models are used in preliminary experiments on text detection in scene images. The results show that our proposed model-based approach can be applied for a coherent SIFT-based text detection and recognition process.
机译:天然的城市场景图像包含许多字符识别问题,例如亮度噪声,字体样式变化或背景混乱。在自然场景中检测和识别文本是一个难题。已经提出了几种技术来克服这些问题。但是,这些通常基于自下而上的方案,该方案提供了许多误报,误报和密集计算。因此,需要一种替代的,高效的,基于特征的期望驱动方法。本文提出了一种基于众所周知的SIFT算法的可用于期望驱动技术的建模方法。根据产生的模型(对象注意补丁)的个人临时字符识别性能对其进行评估。随后,将经过训练的补丁模型用于场景图像中文本检测的初步实验中。结果表明,我们提出的基于模型的方法可应用于基于SIFT的连贯文本检测和识别过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号